

ADVANCED REACTOR SAFEGUARDS

MC&A Recommendations for Liquid-Fueled MSRs

RESENTED BY Karen Hogue, ORNL

Team: Matthew Krupcale, Logan Scott,

Rabab Elzohery

April 18, 2023

Project Motivation

- Provide recommendations to support U.S. liquid-fueled MSR vendors in developing MC&A plans
- Engage with NRC MC&A group to provide technical support and understand their expectations

 Perform technical assessments of different design variants to tailor MC&A recommendations

NRC Licensing Context

- License applicants for LWRs do not have to submit an MC&A plan
 - Fundamental Nuclear Material Control (FNMC) plan
- Fuel fabrication facilities and enrichment plants do submit FNMC plans
 - However, there is no transmutation, depletion, and only limited loss due to spontaneous decay in existing facilities
- No current NRC plans to develop a modified or MSRspecific approach for MC&A plans
 - Liquid-fueled MSRs are bulk facilities and should develop and implement MC&A plans

SNM Flow in a Liquid-Fueled MSR

Potential Liquid-fueled MSR Approaches

- Option 1: treat a liquid-fueled MSR like any other bulk facility and directly apply Part 74 requirements
 - MSRs aren't the same as fuel fabrication facilities; SNM is in highly radioactive material and not accessible
 - Expensive to implement
 - Likely not attainable with current technologies
 - Inconsistent with NRC's approach for other reactors
 - High level of resources devoted to MC&A is (team's opinion) not necessary to prevent or detect diversion

Potential Liquid-fueled MSR Approaches

- Option 2: treat a liquid-fueled MSR like an LWR and do not submit an MC&A plan in license application
 - SNM in liquid-fueled MSRs is not in large, heavy items that can be counted and for which diversion has arguably more obvious indicators from a nuclear security perspective

Option 3: Proposed MC&A Approach

Periodic inventories performed, IDs and SEIDs calculated (follows Part 74 requirements)

Periodic inventories performed, IDs and SEIDs calculated (follows Part 74 requirements)

Conceptual draft of MC&A Elements

- Gross net weight of containers and transfer tanks
- Gamma spectroscopy on outside of containers
- Verifying TIDs on containers

- Gross net weight of any containers and tanks
- NDA measurements on outside of containers
- NDA measurements to quantify residual material
- TID verification on containers

Note: this is an early conceptual draft of proposed MC&A elements.

MSR Variant Analysis

- Objective: Define safeguards-relevant parameters for different liquidfueled MSR designs
- Purpose: Analyze different potential liquid-fueled MSR designs to tailor MC&A recommendations based on MSR features

- Integral, thermal spectrum reactors
 - Essentially no processing within reactor facility
 - MC&A focuses on inputs and outputs of containment
- Thermal spectrum reactors with some processing
 - E.g., mechanical filtering of salt; filters in off-gas
 - MC&A focuses on inputs, outputs and potentially some monitoring for diversion
- Breeder designs with chemical separations
 - SNM or precursors may be separated out (e.g., co-mingled with actinides)
 - MC&A focuses on inputs, outputs, and monitoring for diversion within process streams
- Cl-fueled fast reactors with some processing
 - E.g., mechanical filtering of salt; filters on off-gas
 - MC&A focuses on inputs, outputs, and monitoring for diversion within process streams

MC&A-Relevant Design Features

- Type of SNM
- Physical and chemical form of SNM
- Quantities of SNM
- Accessibility of SNM
 - Radioactivity of material in which the SNM is located
 - Concentration of SNM

Key Design Parameters of Example MSR Variants

Parameter		MSDR	MSRE	REBUS-3700	MOSART
Thermal power (MW)		750	8	3700	2400
Specific power (MW/MTHM _i)		16.4	36.7	32.2	140.0
Neutron spectrum		Thermal	Thermal	Fast	Fast
Fuel Cycle		²³² Th+ ²³⁵ U/ ²³³ U+Pu	U/Pu	U+TRU/Pu	²³² Th+TRU/ ²³³ U+Pu
Fresh Fuel	Chemical form	ThF ₄ , UF ₄	UF ₄	UCl ₃ , TRUCl ₃	ThF ₄ , TRUF ₃
	Molten salt (mol %)	LiF-BeF ₂ -ThF ₄ -UF ₄ (71.5- 16-12-0.5)	LiF-BeF ₂ -ZrF ₄ -UF ₄ (65-29.1-5-0.9)	NaCl+(U+16.7 at% TRU)Cl ₃ (55-45)	LiF-BeF ₂ -ThF ₄ -TRUF ₃ (69.75-27.0-2.0-1.25)
	²³⁵ U (wt% enrichment)	93.0 (5.0 in modified design)	31.6	0.642	9.94
Droeding mixture: U+TRU gain		breeding mixture: U+TRU gain Intern	to steam generator	Ref: [1] – [8]	

Ref: [1]

Ref: [3]

Ref: [1] – [8

Ref: [2]

Ref: [4]

Safeguards-relevant design parameters: Initial Inventory in Fresh Fuel Salt

Initial inventory mass / concentration [kg] / [kg/L]	MSDR	MSRE	REBUS-3700	MOSART
²³² Th	4.40e4 / 1.44e0	0/0	0/0	1.75e4 / 3.04e-1
²³³ U	0/0	0/0	0/0	0/0
²³⁵ U	1.73e3 / 5.65e-2	6.84e1 / 3.28e-2	6.88e2 / 1.24e-2	0/0
U	1.86e3 / 6.07e-2	2.18e2 / 1.05e-1	9.55e4 / 1.72e0	0/0
²³⁹ Pu	0/0	0/0	9.25e3 / 1.66e-1	5.06e3 / 8.79e-2
Pu	0/0	0/0	1.69e4 / 3.03e-1	1.03e4 / 1.78e-1
Actinides	4.58e4 / 1.50e0	2.18e2 / 1.05e-1	1.15e5 / 2.06e0	2.88e4 / 5.01e-1

13

Safeguards-relevant design parameters: Quantities and concentrations of SNM

Early in Life – Late in Life* mass / concentration [kg / MW] / [kg/L MW]	MSRE	REBUS-3700	Generic Cl fast reactor	MOSART
²³² Th	9.9e-10 – 3.6e-7 / 1.0e-13 – 3.8e-11	1.8e-10 – 4.6e-9 / 2.7e-13 – 7.1e-12	1.8e-8 – 1.2e-7 / 3.1e-11 – 1.9e-10	4.3e0 - 4.1e0 / 1.9e-3 - 1.8e-3
²³³ U	7.3e-11 – 2.6e-8 / 7.6e-15 – 2.8e-12	9.1e-9 3.6e-7 / 1.4e-11 - 5.5e-10	4.6e-9 – 3.1e-8 / 7.6e-12 – 5.1e-11	2.3e-2 – 5.1e-1 / 9.9e-6 – 2.2e-4
²³⁵ U	8.5e0 - 6.2e0 / 8.9e-4 – 6.5e-4	1.8e-1 – 1.0e-1 / 2.8e-4 – 1.6e-4	2.8e1 - 2.7e1 / 4.6e-2 – 4.5e-2	1.9e-5 – 1.9e-2 / 8.2e-9 – 7.9e-6
U	2.7e1 - 2.5e1 / 2.8e-3 - 2.6e-3	2.6e1 - 2.6e1 / 4.0e-2 - 4.0e-2	1.4e2 - 1.4e2 / 2.4e-1 – 2.3e-1	2.4e-2 – 6.0e-1 / 1.0e-5 – 2.6e-4
²³⁹ Pu	5.3e-4 – 3.6e-1 / 5.5e-8 – 3.8e-5	2.5e0 - 2.7e0 / 3.9e-3 / 4.1e-3	1.8e-1 – 8.9e-1 / 3.0e-4 – 1.5e-3	1.2e0 - 6.5e-1 / 5.2e-4 – 2.8e-4
Pu	5.3e-4 – 3.8e-1 / 5.5e-8 – 4.0e-5	4.6e0 - 4.7e0 / 7.0e-3 - 7.2e-3	1.8e-1 – 9.0e-1 / 3.0e-4 – 1.5e-3	2.5e0 - 2.4e0 / 1.1e-3 - 1.0e-3
SNM	8.5e0 - 6.7e0 / 8.9e-4 - 6.9e-4	4.8e0 - 4.8e0 / 7.3e-3 - 7.3e-3	2.8e1 - 2.8e1 / 4.7e-2 – 4.6e-2	2.6e0 - 3.0e0 / 1.1e-3 – 1.3e-3
Radioactivity concentration [Ci/L MW]	2.3e3 - 2.7e3	1.1e2 - 1.1e2		9.7e1 - 1.0e2

Ref: [5] - [6], [9]

Conclusions

- Modeling and simulation are being leveraged to estimate safeguardsrelevant parameters for different types of liquid-fueled MSR designs and tailor MC&A recommendations
- The team recommends a novel MC&A approach strategy in licenseapplications to the NRC and is discussing this with the NRC MC&A group
 - Periodic inventories will be conducted on MBAs outside of reactor containment boundaries
 - Containment and surveillance (i.e., TIDs, cameras, etc.) will supplement material accountancy
 - In some (most) liquid-fueled MSRs, monitoring for diversion should be performed within containment at points identified through a diversion analysis

References

- [1] Bettis, E. S., L. G. Alexander, and H. L. Watts. 1972. *Design Studies of a Molten-Salt Reactor Demonstration Plant*. Tech. Rep. ORNL-TM-3832, Oak Ridge National Laboratory.
- [2] Robertson, R. C. 1965. MSRE Design and Operations Report Part I: Description of Reactor Design. Tech. Rep. ORNL-TM-728, Oak Ridge National Laboratory.
- [3] Mourogov, A. and P. M. Bokov. 2006. "Potentialities of the fast spectrum molten salt reactor concept: REBUS-3700." *Energy Conversion and Management* 47(17): 2761-2771.
- [4] Ignatiev, V. V., O. Feynberg, I. Gnidoi, A. Merzlyakov, V. Smirnov, A. Surenkov, I. Tretiakov, and R. Zakirov. 2007. "Progress in Development of Li,Be,Na/F Molten Salt Actinide Recycler & Transmuter Concept." Proceedings of ICAPP 2007.
- [5] Lo, A., F. Bostelmann, D. Hartanto, B. Betzler, and W. A. Wieselquist. 2022. *Application of SCALE to Molten Salt Fueled Reactor Physics in Support of Severe Accident Analyses*. Tech. Rep. ORNL/TM-2022/1844, Oak Ridge National Laboratory.
- [6] Shoman, N. and M. Higgins. 2022. FY22 Final Report on Molten Salt Reactor Safeguards Modeling. Tech. Rep. SAND2022-11048 O, Sandia National Laboratories.
- [7] Rykhlevskii, A., B. R. Betzler, A. Worrall, and K. D. Huff. 2019. "Fuel Cycle Performance of Fast Spectrum Molten Salt Reactor Designs." International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2019): 342-353.
- [8] Betzler, B. R., A. Rykhlevskii, A. Worrall, and K. D. Huff. 2019. "Impacts of Fast-Spectrum Molten Salt Reactor Characteristics on Fuel Cycle Performance." Global 2019 International Fuel Cycle Conference: 514-521.
- [9] Hartanto, D. 2023. Personal Communication.